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The article considers mathematical models of the processes of 

diffusion, dissolution of contaminant mixtures in the aquatic 

environment and formation of water quality, as well as the model 

of the distribution of contaminant sources throughout the water 

basin. The construction of mathematical models that can evaluate 

the ability of natural waters to decompose contaminant 

components, i.e., the ability of bodies of water to assimilate them, 

is studied. 
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1. Introduction 

 

The aquatic environment is most affected by non-conservative, i.e., organic waste, which is 

subjected to biochemical oxidation. Decomposition of organic matter in water occurs in a form 

equivalent to oxidation reactions, leading to a decrease in the concentration of free oxygen dissolved 

in water, resulting in a disruption of the ecological balance. The amount of dissolved oxygen in water 

is considered to be one of the main criteria and a general indicator of the viability of the aquatic 

environment.  

 

2. General problem statement 

We can write the equation of variation of water volume in unit time in some cross-section X of 

a water basin (or a large river) as follows: 

𝜕𝑄

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
= 𝑄𝑖 + 𝑄𝑎𝑓 + 𝑄𝑙                                                                (1) 

here, 𝑄𝑖(𝑥, 𝑡);  𝑄𝑎𝑓(𝑥, 𝑡);  𝑄𝑙(𝑥, 𝑡)  are groundwater per unit length, surface runoff from the sides, and 

evaporation, respectively. Let us write the energy balance equation for the elementary volume of the 

water basin. For energy flow  

𝑆 = 𝑞𝑠 + 𝐺(𝛽𝑇ℎ
4 − 𝑒𝑇4) + k′ω(𝑇ℎ − T)                                                  (2) 

here, e is the mean value of water absorption coefficient, 𝑞𝑠 is the solar radiation getting in the 

reservoir during convective heat exchange, G is the Stefan-Boltzmann constant, 𝛽 is the cloudiness 
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coefficient of the sky of the water basin, 𝑇ℎ is the absolute temperature of the air, 𝑇 is the water vapor 

temperature, 𝑘′ is the convection rate, 𝜔 is the speed of the wind. The amount of evaporated water 

depends on the current meteorological conditions and the current water temperature and can be 

determined by the following formula [1, 2]: 

𝑄𝑒 = 𝑘”𝜔(𝑒𝑠(T) − 𝑒𝑎𝑟(𝑇ℎ, ω, … ))                                                         (3) 

here, 𝑘” is the 𝑎𝑞2 components, 𝑒𝑠(𝑇) is the intensity of water evaporation at room temperature 𝑇, 

𝑒𝑎𝑟 is the is the current pressure of water vapor in the atmosphere. Given that the cross section of the 

water basin is variable (Ω(𝑥, 𝑡)), we can write the heat transfer equation as follows: 

𝜕𝑇

𝜕𝑡
+ 𝜈

𝜕𝑇

𝜕𝑥
=
−𝑇𝑄′

Ω
+ (𝑄𝑖𝑇𝑖 + 𝑄𝑎𝑓𝑇𝑎𝑓 + 𝑄𝑒𝑐𝑒/𝑐𝑝 + 𝑆𝑙/𝜌𝑐𝑝)/Ω                            (4) 

here, 𝑇(𝑥, 𝑡) is the absolute temperature of water at time t in the cross section x, 𝑐𝑝  is the heat capacity 

at constant pressure, 𝜈 is the velocity of water in a unit cross section.  

𝜈 =
𝑄(𝑥, 𝑦)

Ω(𝑥, 𝑦)
,      𝑄′ = 𝑄𝑖 + 𝑄𝑎𝑓 + 𝑄𝑒 ,    𝑆 = 𝑆(𝑇),      𝑄𝑖 = 𝑄𝑖(𝑇)                (5) 

 

3. Solution 

 

If there are strong flows in the water basin (for instance, in rivers), then by discarding the 

dispersion and diffusion factors in the direction of the flow, we can assume that the mixtures 

propagate only through the flow. Similarly, we derive equations of similar structure for the amount 

of oxygen consumed in biochemical reactions  𝐶1(𝑥, 𝑡), and the amount of free oxygen dissolved in 

water  𝐶2(𝑥, 𝑡). Without focusing on intermediate transformations, we obtain the following system of 

equations to describe the whole process: 

{
 
 
 
 

 
 
 
 

𝜕𝑄

𝜕𝑥
+
𝜕Ω

𝜕𝑡
= 𝑄𝑖 + 𝑄𝑎𝑓 + 𝑄𝑙(𝑇)

𝜕𝑇

𝜕𝑡
+ 𝜐

𝜕𝑇

𝜕𝑥
=
−𝑇𝑄′

Ω
+
(𝑄𝑖𝑇𝑖 + 𝑄𝑎𝑓𝑇𝑎𝑓 + 𝑄𝑒𝑐𝑒/𝑐𝑝 + 𝑆𝑙/𝜌𝑐𝑝)

Ω
𝜕𝐶1
𝜕𝑡

+ 𝜐
𝜕𝐶1
𝜕𝑥

=
(𝑄′(𝑇) + 𝑘𝑠𝐶1 − 𝑘𝑐(𝐶1, 𝐶2,𝑇) + 𝑀 + 𝑄𝑎𝑓𝐶1𝑎𝑓)

Ω
𝜕𝐶2
𝜕𝑡

+ 𝜐
𝜕𝐶2
𝜕𝑥

=
(𝐶2𝑄

′(𝑇) + 𝑘2(𝑇)𝑙 − 𝑘𝑐(𝐶1, 𝐶2,𝑇) + 𝑁 + 𝑄𝑎𝑓𝐶2)

Ω

                         (6) 

(6) An analytical solution of the system of equations is still impossible. Besides, in order to 

give an analytical solution, the obvious dependence of expressions that are a function of T must be 

given in the form of a formula. In many practical problems, such a description is impossible, or more 

precisely, the results of natural measurements are usually discrete, that is, in the tabular (matrix) form. 

Therefore, it is more expedient to solve this system by applying numerical methods. It is possible to 

use existing software packages for this purpose. 

For many specific water basins, the model of the problem can be simplified a little. For instance, 

for the motionless water regime: in this case, 
𝜕𝑄

𝜕𝑡
= 0 and the quantities 𝑄𝑖,  𝑄𝑎𝑓 , 𝑄𝑙  do not depend on 

time. Then 
𝜕𝑄

𝜕𝑥
= 𝑄𝑖 + 𝑄𝑎𝑓 +𝑄𝑙                                                                 (7) 

The solution of this equation for prismatic water basins can be written as follows: 
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𝑄(𝑥) = 𝑄(0) + ∫ (𝑄𝑖(𝜉) + 𝑄𝑎𝑓(𝜉)
𝑥

0

− 𝑄𝑙(𝜉))𝑑𝜉                                    (8) 

When it is possible to calculate the cross-sectional area at each point, we can find the velocity 

of water in each section by the formula 𝜈(𝑥) = 𝑄(𝑥)/Ω(𝑥). It can be taken as 𝜈(𝑥, 𝑡) = 𝜈𝑠𝑖𝑛𝜔𝑡 +
𝜈(𝑥) in water basins where ebbs and flows are periodic or in large rivers (Kura River, etc.) during 

snowmelt.  

If we assume that the environment is aerobic to a significant degree 𝐾𝑐(𝐶1) = 𝑐𝑜𝑛𝑠𝑡, then we 

can formulate the remaining equations of the system in the following typological form: 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+ 𝜈(𝑥, 𝑡)

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
= 𝑓(𝑥, 𝑡, 𝑢)                                            (9) 

For this equation, we can reduce the solution of the Cauchy problem to finding the function 

𝑢(𝑥, 𝑡) that satisfies the boundary condition 𝑢(0, 𝑡) = 𝑢𝑙(𝑡),   0 < 𝑡 < 𝑇  and the initial condition 

𝑢(𝑥, 0) = 𝑢𝑖(𝑥),   0 < 𝑥 < 𝑇, with 0 < 𝑥 < 𝑋,   0 < 𝑡 < 𝑇. 

1) Let us consider some typical practical models: 

Periodic variation of the mass of water constantly contaminated with organic substances. This 

is especially true for rivers flowing through a stationary contaminant source. Initial data: 𝑞1,𝑠𝑡 – 

contaminant water flow rate, 𝐶1,𝑠𝑡𝐶2,𝑠𝑡 –  composition of the waste, oxygen saturation of river water. 

The variation of water flow rate in the river can be expressed as follows:  

𝑄(𝑡) = 𝑄1 + ∆𝑄𝑐𝑜𝑠𝜔𝑡 

here, ∆ is the volume of contaminated water that periodically enters the water basin at the end of 

production. Then at the point where the contaminant enters (𝑥 = 0): 

 𝑄(𝑡) = 𝑄 + ∆𝑄𝑐𝑜𝑠𝜔𝑡,   𝑄 = 𝑄1 + 𝑞1,𝑠𝑡

𝐶1(𝑡) = 𝐶1(𝑄, 𝑡) =
𝑞1𝐶1𝑠𝑡

𝑄 + ∆𝑄𝑐𝑜𝑠𝜔𝑡

𝐶2(𝑡) = 𝐶2(𝑄, 𝑡) = (𝑞1,𝑠𝑡𝐶2𝑠𝑡 + (𝑄1 + ∆𝑄𝑐𝑜𝑠𝜔𝑡)𝐶2𝑠)/(𝑄 + ∆𝑄𝑐𝑜𝑠𝜔𝑡)

                   (10) 

If the water flow rate in the river fluctuates, the flow speed 𝜈(𝑥, 𝑡) and the cross section Ω(𝑥, 𝑡) 
are variables. Assuming Ω(𝑡) = 𝑐𝑜𝑛𝑠𝑡 for a given part, we 𝜈(𝑥, 𝑡) = 𝜈̅ + ∆𝜈𝑐𝑜𝑠𝜔𝑡. 

Here, since 𝜈(𝑥, 𝑡) =
𝑑𝑥

𝑑𝑡
, 
𝑑𝑥

𝑑𝑡
= 𝜈̅ + Δ𝜈𝑐𝑜𝑠𝜔𝑡, and we get the solution 𝑥(𝑡) = 𝑄, 𝑥(𝜏) =

0; 𝑢(𝜏) = 𝑢𝑐(𝜏), we get that 𝑥(𝑡, 𝜏) = 𝜈(𝑥 − 𝜏) + Δ𝜈(𝑠𝑖𝑛𝜔𝑡 − 𝑠𝑖𝑛𝜔𝜏)/𝜔. Here, 𝑡 = 𝜏 is the 

moment when the contaminant mixture reaches the river [3]. 

If we do not take into account side inflows, filtration and evaporation in the next part of the 

river, the oxygen demand of biochemical reactions decreases with increasing x, and the dependence 

on t changes with the law of oscillation. 

Similarly, for large bodies of water such as a sea, it is possible to determine at what distance 

from the contaminant source the use of dissolved oxygen in the water will drop to the minimum, and 

it is possible to determine outside which area the ecological balance is disturbed, i.e., to solve the 

problem of ecological forecasting. 

2) A model for stable water flow rate and organic pollutant load:  

If 𝑄(𝑡) = 𝑐𝑜𝑛𝑠𝑡, then x(𝑡) = 𝜈̅(𝑡 − 𝜏). We denote oxygen deprivation by Δ = 𝐶2𝑞 − 𝐶2. Then 

we get  
𝑑𝐶1

𝑑𝑡
= −𝑘1𝐶1                                                                         (11) 
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𝑑Δ

𝑑𝑡
= −𝑘1𝐶1 − 𝑘2(𝐶2𝑞 − 𝑠2). 

𝐶2𝑞 ~ a stationary estimate of 𝐶2. 

 
Fig. 1. Variation of 𝐶1 and 𝐶2 throughout the river 

 

𝐶1 = 𝐶10 exp(−𝑘1𝑥) ,

𝐶2 = 𝐶2𝑞 −
𝑘1𝑐10
𝑘2 − 𝑘1

(exp(−𝑘1𝑥) − exp(−𝑘2𝑥)) − (𝐶2𝑞 − 𝐶20) exp(−𝑘2𝑥)                   (12)

𝑘1 = 𝑡−1𝑙𝑛 (
𝐶10
𝐶1(𝑡)

)

 

here, 𝑘1 = 𝑐𝑜𝑛𝑠𝑡 is the mineralization coefficient, 𝑘2 = 𝑐𝑜𝑛𝑠𝑡 is  the natural reaction coefficient. In 

the general case, we can write the last obtain equations as 𝑍 = 𝐹𝑍. Here, Z is a vector, F is a matrix. 

For the case under consideration, 

𝐹 = |
−𝑘1 0
𝑘1 −𝑘2

|  is in the form of a determinant. 

Since F is a matrix of constant elements, the plane of states (cases) expressed by the solutions of this 

equation will also be unique. If 𝑅𝑒(𝑘1, 𝑘2) > 0, the state will be asymptotically stable. This state is 

asymptotically stable, since the diagonal elements of the matrix are −𝑘1 və 𝑘2 here. In any case, →
𝑥0, 𝐶1 = 0, ∆= 0,  i.e., the organic mixture is oxidized and the amount of oxygen in the water in the 

areas 𝑥 > 𝑥0 is saturated and the ecological balance is not disturbed in those areas [4, 5]. 

3) Model of the distribution of contaminants throughout the water basin. 

If we denote the intensity of distribution of contaminants throughout the water basin by M(t), 

we can write a model of this process as follows. 

𝜕𝐶1
𝜕𝑡

+ 𝜈
𝜕𝐶1
𝜕𝑥

=
𝑘1𝐶1 +𝑀(𝑡)

Ω(𝑥)
                                                      (13) 

𝜕Δ

𝜕𝑡
+ 𝜈

𝜕Δ

𝜕𝑥
= 𝑘1𝐶1 − 𝑘2Δ 

We take the initial condition as 𝐶1(𝑥, 0) = 0, and the boundary condition as 𝐶1(0, 𝑡) = 0. If we apply 

the Laplace time transform to the first equation of this system, taking into account the homogeneous 

initial condition, after a series of mathematical transformations, we get the equation  

𝑑𝐶1̅(𝑥, 𝑝)

𝑑𝑡
= −(𝑘1 −

𝑝

𝜈
) 𝐶1̅(𝑥, 𝑝) =

𝑀̅(𝑥, 𝑝)

Ω(𝑥)
 .                                     (14) 

Here, 𝐶1̅, 𝑀 are Laplace descriptions of functions of the same name. p is a parameter of the Laplace 

C

x O 

C10 

xmin 

C 

x O 

C10 

C2q 

xmax xmax 
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transform. The solution of this equation that satisfies the specified boundary condition is as follows. 

𝐶1̅(𝑥, 𝑝) = −
𝑀̅(𝑝)

Ω"(𝑥)(𝑝𝜈 + 𝑘1)
(1 − 𝑒−

𝑥
𝜈
(𝑘1+𝑝𝜈)),                                  (15) 

where  
𝑥

𝜈
  is the time required for an elementary particle to move to a distance x. Applying the inverse 

Laplace transform, to find 𝐶1(𝑥, 𝑡), an explicit analytical condition of 𝑀(𝑡) must be given. For 

instance, if 𝑀(𝑡) is a unit function, then 𝑀̅(𝑝) =
1

𝑝
. 

Then: 

𝐶10(𝑥, 𝑡) = 𝑄"(𝑥) ∙ ((𝑒
−𝑘11𝑡 − 1) − 2√𝑡 ierfc(

𝑥

2𝜈√𝑡
) ∙ 𝑒

𝑥𝑘1
𝜈 )                       (16) 

If the intensity of the distributed source changes periodically over time, i.e., if 𝑀(𝑡) =

𝑀0𝑠𝑖𝑛𝜔0𝑡, 𝑀0, 𝜔0 = 𝑐𝑜𝑛𝑠𝑡. Then 𝑀̅(𝑝) =
𝑀0

𝑝2+𝜔0
2 and we find that 𝐶1(𝑥, 𝑡) = 𝑀0 ∙ 𝑠𝑖𝑛𝜔0𝑡 ∗

𝐶10(𝑥, 𝑡). If 𝑀(𝑡) is any specified time function (satisfying the conditions that make it possible to 

apply the Laplace transform), we obtain the solution as follows: 

𝐶1(𝑥, 𝑡) = 𝑀(𝑡) ∗ 𝐶10(𝑥, 𝑡). 

Here * is a convolution of functions. 

 

4. Conclusion 

 

Mathematical models have been proposed to study the effects of convective diffusion and 

different flows in the process of transformation in the aquatic environment of contaminant mixtures 

entering still water basins, and important conditions for solving the problem have been identified. 
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