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1. Introduction

The aquatic environment is most affected by non-conservative, i.e., organic waste, which is
subjected to biochemical oxidation. Decomposition of organic matter in water occurs in a form
equivalent to oxidation reactions, leading to a decrease in the concentration of free oxygen dissolved
in water, resulting in a disruption of the ecological balance. The amount of dissolved oxygen in water
is considered to be one of the main criteria and a general indicator of the viability of the aquatic
environment.

2. General problem statement

We can write the equation of variation of water volume in unit time in some cross-section X of
a water basin (or a large river) as follows:

0Q 4Q
Sty =Gt tQ €y
here, Q;(x,t); Qqr(x,t); Q;(x,t) are groundwater per unit length, surface runoff from the sides, and

evaporation, respectively. Let us write the energy balance equation for the elementary volume of the
water basin. For energy flow

S=qs+GBT —eT*) +K'w(T, —T) (2)

here, e is the mean value of water absorption coefficient, g, is the solar radiation getting in the
reservoir during convective heat exchange, G is the Stefan-Boltzmann constant, £ is the cloudiness
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coefficient of the sky of the water basin, T}, is the absolute temperature of the air, T is the water vapor
temperature, k' is the convection rate, w is the speed of the wind. The amount of evaporated water
depends on the current meteorological conditions and the current water temperature and can be
determined by the following formula [1, 2]:

Qe = k"w(es(T) — eqr (Th, w, )) 3)

here, k” is the aq? components, e(T) is the intensity of water evaporation at room temperature T,
eqr 1S the is the current pressure of water vapor in the atmosphere. Given that the cross section of the
water basin is variable (Q(x, t)), we can write the heat transfer equation as follows:

aT oT -TQ'
E + Va_x = Q + (QiT; + QafTaf + Qece/cp + Sl/pcp)/ﬂ 4)

here, T (x, t) is the absolute temperature of water at time t in the cross section x, c,, is the heat capacity
at constant pressure, v is the velocity of water in a unit cross section.

- Q(x,y)
Q(x,y)’

Q' =0Qi+Qu+Q., S=ST), Q=0T (5)

3. Solution

If there are strong flows in the water basin (for instance, in rivers), then by discarding the
dispersion and diffusion factors in the direction of the flow, we can assume that the mixtures
propagate only through the flow. Similarly, we derive equations of similar structure for the amount
of oxygen consumed in biochemical reactions C;(x,t), and the amount of free oxygen dissolved in
water C,(x,t). Without focusing on intermediate transformations, we obtain the following system of
equations to describe the whole process:

( aQ 00
a"‘az Qi + Qqp + Qu(T)
oT oT —TQ" (QiT; + QufTar + Qece/cp + Sl/pcy)
——tv - = +
) at dx Q Q 6)
ac,  9C; (Q(T) + ksCy —kc(C1,CoT) + M + QurCiar)
+v =
dat ox Q
aC,  3C; (CQ'(T) + ky (Tl — ke (Cy, CoT) + N + QgfCy)
+v =
\ Ot 0x Q

(6) An analytical solution of the system of equations is still impossible. Besides, in order to
give an analytical solution, the obvious dependence of expressions that are a function of T must be
given in the form of a formula. In many practical problems, such a description is impossible, or more
precisely, the results of natural measurements are usually discrete, that is, in the tabular (matrix) form.
Therefore, it is more expedient to solve this system by applying numerical methods. It is possible to
use existing software packages for this purpose.

For many specific water basins, the model of the problem can be simplified a little. For instance,

for the motionless water regime: in this case, Z—f = 0 and the quantities Q;, @45, Q; do not depend on
time. Then

90
a:Qi'i'Qaf‘l'Ql )
The solution of this equation for prismatic water basins can be written as follows:
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Q00 = Q(0) + f (Qu(®) + Qus (&) — QO dE ®)

When it is possible to calculate the cross-sectional area at each point, we can find the velocity
of water in each section by the formula v(x) = Q(x)/Q(x). It can be taken as v(x, t) = vsinwt +
v(x) in water basins where ebbs and flows are periodic or in large rivers (Kura River, etc.) during
snowmelt.
If we assume that the environment is aerobic to a significant degree K.(C;) = const, then we
can formulate the remaining equations of the system in the following typological form:
ou(x,t ou(x,t
(gt )+ v(x,t) c'(ix ) = f(x,t,u) 9
For this equation, we can reduce the solution of the Cauchy problem to finding the function
u(x, t) that satisfies the boundary condition u(0,t) = w;(t), 0 <t < T and the initial condition
u(x,0)=u;(x), 0<x<T,with0<x<X, 0<t<T.

1) Let us consider some typical practical models:

Periodic variation of the mass of water constantly contaminated with organic substances. This
is especially true for rivers flowing through a stationary contaminant source. Initial data: q; ;s —
contaminant water flow rate, C; ;. C, s+ — composition of the waste, oxygen saturation of river water.
The variation of water flow rate in the river can be expressed as follows:

Q(t) = Q1 + AQcoswt

here, A is the volume of contaminated water that periodically enters the water basin at the end of
production. Then at the point where the contaminant enters (x = 0):

Q(t) = Q + AQcoswt, Q = Q1 + qq 5

Cis
C;(t) = C(Q,t) = %

C,(t) = C2(Q,t) = (q1,5tCast + (Q1 + AQcoswt) () /(Q + AQcoswt)

If the water flow rate in the river fluctuates, the flow speed v(x, t) and the cross section Q(x, t)

are variables. Assuming Q(t) = const for a given part, we v(x,t) = v + Avcoswt.
dx dx

Here, since v(x,t) = i Vv + Avcoswt, and we get the solution x(t) = Q, x(7) =
0;u(tr) = u.(r), we get that x(t,7) = v(x — 1) + Av(sinwt — sinwt)/w. Here, t =1 is the
moment when the contaminant mixture reaches the river [3].

If we do not take into account side inflows, filtration and evaporation in the next part of the
river, the oxygen demand of biochemical reactions decreases with increasing x, and the dependence
on t changes with the law of oscillation.

Similarly, for large bodies of water such as a sea, it is possible to determine at what distance
from the contaminant source the use of dissolved oxygen in the water will drop to the minimum, and
it is possible to determine outside which area the ecological balance is disturbed, i.e., to solve the

problem of ecological forecasting.

(10)

2) A model for stable water flow rate and organic pollutant load:

If Q(t) = const, then x(t) = v(t — 7). We denote oxygen deprivation by A = C;, — C,. Then
we get
dcy

dt = _klcl (11)
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da
i —k.Cy — kZ(CZq — S2).

C,q ~ astationary estimate of C.
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Fig. 1. Variation of C; and C, throughout the river
C1 = Cyo exp(—kqx),
kqc
Co = C2g — 1 (exp(—k1) — exp(—k32)) = (Caq — Cao) exp(—kz) (12)
2 1
Cio
=t1 _
k=t n (Cl(t))

here, k; = const is the mineralization coefficient, k, = const is the natural reaction coefficient. In
the general case, we can write the last obtain equations as Z = FZ. Here, Z is a vector, F is a matrix.
For the case under consideration,

_|=ky O
ke =k
Since F is a matrix of constant elements, the plane of states (cases) expressed by the solutions of this
equation will also be unique. If Re(k4, k,) > 0, the state will be asymptotically stable. This state is
asymptotically stable, since the diagonal elements of the matrix are —k, vo k, here. In any case, -
X9, C; = 0, A= 0, i.e., the organic mixture is oxidized and the amount of oxygen in the water in the
areas x > x, is saturated and the ecological balance is not disturbed in those areas [4, 5].

F is in the form of a determinant.

3) Model of the distribution of contaminants throughout the water basin.

If we denote the intensity of distribution of contaminants throughout the water basin by M(t),
we can write a model of this process as follows.

9C,  AC;  kyCy + M(E)

ot "V ox ) (13)
oA AA
E"’Va: k1C1 _sz

We take the initial condition as C; (x, 0) = 0, and the boundary condition as C,(0,t) = 0. If we apply
the Laplace time transform to the first equation of this system, taking into account the homogeneous
initial condition, after a series of mathematical transformations, we get the equation

dC,(x,p) Dy ~ M (x, p)
T = - (kl - )Cl(x,P) = .Q.(X)

v
Here, C;, M are Laplace descriptions of functions of the same name. p is a parameter of the Laplace

(14)
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transform. The solution of this equation that satisfies the specified boundary condition is as follows.

= _ M(p) . —%(k1+ V)
e TTE | S 1)

where f is the time required for an elementary particle to move to a distance x. Applying the inverse
Laplace transform, to find C;(x,t), an explicit analytical condition of M(t) must be given. For
instance, if M(t) is a unit function, then M (p) = %.
Then:

C1o(x,8) = Q"(x) (™11t — 1) — 2T erfe ;) € ) (16)

If the intensity of the distributed source changes periodically over time, i.e., if M(t) =
Mgysinwyt, My, wy = const. Then M(p) = pzﬂﬁ)g and we find that C,(x,t) = M, sinwgt *
Cio(x, t). If M(t) is any specified time function (satisfying the conditions that make it possible to
apply the Laplace transform), we obtain the solution as follows:

Ci(x,t) = M(¢) * C1o(x, D).

Here * is a convolution of functions.

4. Conclusion

Mathematical models have been proposed to study the effects of convective diffusion and
different flows in the process of transformation in the aquatic environment of contaminant mixtures
entering still water basins, and important conditions for solving the problem have been identified.
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