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The methodology of application of dynamic programming and its 

modification in operational and organizational control is 

developed. To reduce dimensionality, computational difficulties, 

comparison of the methods and maximum use of all resources of 

computational means the principle of complexity is used. 

Computational procedures of dynamic programming are 

implemented in such a way that access to external computer 

memory is carried out as rarely as possible and at the same time 

all the output information is used effectively.  
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1. Introduction 

 

The term "operational and organizational control" in this article means the processes of control 

and decision-making in organization systems and operational control systems based on the use of the 

prediction principle with periodic adjustments based on the processing of current in-formation, i.e., 

rolling plan principle.  

The term "operational and organizational control" reflects the two most significant features of 

the investigated control processes.  

The first feature is that the mathematical formalization of control problems of the control 

objects has constraints that are complex in form and various in content and do not fit entirely in the 

framework of known optimization problems, which requires taking into account a number of 

organizational measures.  

The second feature has to do with the need for operational, i.e., prompt control decision 

making and reflects the fact of time shortage. 

Problems of operational and organizational control are extremely widespread in the field of 

control, both for traditional dynamic objects and objects, the problems of optimal control of which 

have only begun to be studied in recent decades [1-8]. 

When implementing computational procedures of dynamic programming on a computer, the 

key factors limiting the applicability of the method are the amount of required memory and the 

computation time. Both of these factors stem from the dimensionality problem [9-15]. 

The question is whether it is possible to construct computational procedures for dynamic 

programming so that the external memory of the computer is accessed as rarely as possible, and at 
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the same time all the output information (not one number, but an array of numbers) is used effectively.  

 

2. Prerequisites for the development of the method 

 

This procedure can be constructed if the calculations are carried out in blocks and so that the 

operations are performed in each block independently. A possible way of dividing the grid of 

variables into blocks for the case when 𝑥 is a scalar is shown in Fig. 1.  

Suppose that the boundary condition at the left end is located on the boundary of the block 

𝐵 (1, 1), and at the right end — on the boundary of the block 𝐵 (4, 4). Then the following order of 

calculating the blocks is convenient: 

𝐵 (4, 4) → 𝐵 (4, 3) → ⋯ → 𝐵(4, 1) → 𝐵(3, 4) → 𝐵 (3, 3) → ⋯ 

⋯ → 𝐵 (3, 1) → 𝐵(2, 4) → 𝐵(2, 3) → ⋯ → 𝐵(1, 4) → ⋯ → 𝐵(1, 1) 

 

Fig. 1. Dividing the grid of variables into blocks 

 

If the blocks are constructed rationally, then the information for calculating the trajectories 

inside each block can be derived from external memory devices for the entire block. This is possible 

only if the trajectories are located entirely inside the block and do not go outside its boundaries, as 

shown in Fig. 1 in block 𝐵 (3, 2). However, in computational procedures of dynamic programming, 

for any method of dividing the grid of variables into blocks, there are almost always trajectories that 

go outside the block. If we limit ourselves to considering only the trajectories lying inside the block 

or ending at its boundaries, we risk losing the optimal solution. At the same time, we can try to 

organize the calculation process in such a way that the trajectories outside the block are analyzed at 

the points of their intersection with the boundary of the block.  

It was proposed [16] to implement the block principle of the first computational procedure of 

dynamic programming by introducing a variable time quantization step, chosen so that the analyzed 

trajectory ends at one of the boundaries of the block, has a break at the intersection point, and 

continues along the block boundary to the nearest node of the grid of variables. (For instance, as 

shown in Fig. 1, the trajectory 𝐴𝑂𝐷 should be used instead of the trajectory 𝐴𝐶). In this case, the 

corresponding value of the Bellman function 𝜔 is determined on the basis of interpolation (or 

extrapolation) performed with respect to the values of 𝜔𝑘(𝑥𝑘) corresponding to the nodes of the grid 

of variables. This method has been called the "method of dynamic programming using increments of 

state variables" [16]. We could use a shorter name and call it the block dynamic programming method; 

however, following [17], we will call it the modified dynamic programming method.    
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3. Functional equations  

 

We will consider the basic concepts of MDP using the example of already known Lagrange 

problem. 

𝐸 (𝑥, 𝑢) =  ∫ 𝐹 (𝑥, 𝑢)𝑑𝑡 → 𝑚𝑖𝑛;                                                           (1)

𝑇

0

 

𝑥̇ = 𝑓 (𝑥, 𝑢);                                                                                (2) 

𝑥 (0) = 𝑎;                                                                                   (3) 

 

supplemented by the conditions   

𝑥 (𝑇) = 𝑏 or not fixed;                                                               (4) 

𝑥 (𝑡) ∈  𝐸𝑥;                                                                                   (5) 

𝑢 (𝑡) ∈  𝐸𝑢,                                                                                  (6) 

where, as before, 𝑥 is a state variable; 𝑢 is the control action; 𝑥 (0) and 𝑥 (𝑇) are the boundary 

conditions; 𝐸𝑥 and 𝐸𝑢 are the regions of admissible states and controls. 

For this problem, we obtained functional equations and considered computational procedures 

of dynamic programming. 

Here we take into account that a grid of variables was constructed with quantization steps of 

the state variables 𝛿𝑡 and time variables ∆. When using the modified dynamic programming method 

(MDP), the same grid of variables [18] is constructed, but in this case the time quantization step, 

which we denote by 𝛿𝑡, can be equal to ∆ only in special cases. Therefore, we will use the functional 

equation  

  

𝜔(𝑥, 𝑇) = min
𝑢
[𝐹(𝑥, 𝑢)Ο𝑡 + 𝜔(𝑥, 𝑇), 𝑇 − Ο𝑡]. 

Consider that this equation is valid for any time moment 𝑡 ∈ [0, 𝑇] and for any quantization step Ο𝑡. 
In MDP, 𝛿𝑡 < ∆ is selected, therefore the difference equation that is valid for ∆ will also be valid for 

𝛿𝑡. It has the form 

𝑥(𝑡 + 𝛿𝑡) = 𝑥(𝑡) + 𝛿𝑡𝑓(𝑥(𝑡), 𝑢(𝑡)).                                                (7) 

Now we can write the functional equation in the following form: 

𝜔(𝑥, 𝑇) − min
𝑢
[𝐹(𝑥(𝑡), 𝑢(𝑡))𝛿𝑡 +𝜔(𝑥(𝑡 + 𝛿𝑡), 𝑡 + 𝛿𝑡)].                                 (8) 

To implement MDP, as already mentioned, the same grid of variables is constructed as for the 

first computational procedure of dynamic programming, i.e., with quantization steps 𝛿𝑡 and ∆. In 

addition, the control quantization is carried out in a similar way, i.e., with step 𝜈. Thus, constraints 

for problem (1)-(6) practically have the same form: 

                    𝑥(𝑡) ∈ {𝑀−, 𝑀− + 𝛿,𝑀− + 2𝛿,… ,𝑀1 − 2𝛿,𝑀1 − 𝛿,𝑀1};                              (9) 

                   𝑢(𝑡) ∈ {𝑀1
−, 𝑀1

− + 𝜈,𝑀1
− + 2𝜈,… ,𝑀1

+ − 2𝜈,𝑀1
+ − 𝜈,𝑀1

+}.                           (10) 

In MDP, the quantization step 𝛿𝑡 is not a constant but a variable, and 𝛿𝑡 ≤ ∆. In the cases when 

𝛿𝑡 < ∆, it should be noted that 𝑥(𝑡 + 𝛿𝑡) = 𝑥(𝑡) + 𝛿 = 𝑥(𝑡 + 𝜇∆), where 𝜇 is a positive integer. 

Most often 𝜇 = 1. This is explained by the main condition of MDP: for any 𝑢(𝑡) from (10), the 

increment of the variable should be more than 𝛿. Therefore, equation (8) can now be written in the 

form 
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             𝜔(𝑥, 𝑇) − min
𝑢
[𝐹(𝑥(𝑡), 𝑢(𝑡))𝛿𝑖  ∇𝐸⁄ + 𝜔(𝑥(𝑡 + 𝜇∆), 𝑡 + 𝜇∆)].                     (11) 

Here the quantity ∇𝐸 is the increment of criterion (1) caused by the transition of the system from the 

state 𝑥(𝑡 + 𝛿𝑡) to the state 𝑥(𝑡 + 𝜇∆).. These states are equal in magnitude and differ only in the time 

instants 𝑡 + 𝛿𝑡 and 𝑡 + 𝜇∆. For instance, for the case shown in Fig. 1, the state 𝑥(𝑡) is determined by 

the point 𝐴, the state 𝑥(𝑡 + 𝛿𝑡) — by the point 𝑄, the state 𝑥(𝑡 + 𝜇∆) — by the point 𝐷1, i.e., 𝜇 = 1. 

The ∇𝐸 value is determined by the trajectory OD. Since in MDP 𝑥(𝑡 + 𝛿𝑡) = 𝑥(𝑡 + 𝜇∆), it usually 

turns out that 𝑢(𝑡) for 𝑡 ∈ [𝑡 + 𝛿𝑡, 𝑡 + 𝜇∆] is zero. In these cases 

                                   ∇𝐸 = 𝐹(𝑥(𝑡 + 𝛿𝑡), 𝑢(𝑡 + 𝛿𝑡))(𝜇∆ − 𝛿𝑡)                                     (12) 

and 𝑢(𝑡 + 𝛿𝑡) − 0 on the entire interval 𝑡 ∈ [𝑡 + 𝛿𝑡, 𝑡 + 𝜇∆]. 

However, as a rule, interpolation formulas are used in MDP to calculate ∇𝐸, since the validity 

of (12) is not observed for some types of problems. 

 

4. Selection of the time quantization step 

 

The key concept that determines the essence of the MDP method is the concept of the block 

structure of the solution, which makes it possible to reduce the number of accesses to external storage 

devices of the computer, thereby significantly reducing the problem solution time. For this purpose, 

after dividing the grid of variables into blocks, it is necessary to provide special measures so that for 

each value 𝑥⃗(𝑡) the trajectory connecting 𝑥⃗(𝑡) and 𝑥⃗(𝑡 + ∆), does not go outside the boundaries of 

the block. 

These measures in MDP consist in choosing the variable quantization step 𝛿𝑡. The basic rule 

for selecting 𝛿𝑡 is that the value of 𝛿𝑡 should be such that the states 𝑥⃗(𝑡) and 𝑥⃗(𝑡 + ∆) differ from 

each other in each of their components by no more than a quantization step 𝛿𝑡. This requirement 

implies the following formula for determining 𝛿𝑡: 

                                             𝛿𝑡 = min {
𝛿𝑡

|𝑓𝑗(𝑥⃗,𝑢⃗⃗⃗,𝑡𝑗)|
},                                                                  (13) 

where 𝛿𝑡 is the quantization step of 𝑥𝑗(𝑗 = 1, 𝑛̅̅ ̅̅ ̅): 𝑓𝑗  is the right-hand sides of the equations in system 

(2) written in the Cauchy normal form. 

Formula (13) can be obtained for the scalar case from equation (7) if we solve it with respect 

to 𝛿𝑡 and assume in it that 𝑥(𝑡 + 𝛿𝑡) − 𝑥(𝑡) = 𝛿. Then 

                                       𝛿𝑡 =
𝛿

|𝑓(𝑥(𝑡), 𝑢(𝑡))|
                                                                   (14) 

Since the values 𝑓(𝑥(𝑡), 𝑢(𝑡) can be both positive and negative, and 𝛿𝑡 > 0, in the last equation and 

in (13) 𝑓(𝑥⃗, 𝑢⃗⃗, 𝑡)  is taken modulo. In Fig. 2, the selection of 𝛿𝑡 is explained graphically for 

𝑓(𝑥(𝑡), 𝑢(𝑡) > 0 —trajectory OA and for 𝑓(𝑥(𝑡), 𝑢(𝑡) < 0 — trajectory OB. 
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Fig. 2. Selecting the quantization step 𝛿𝑡 
 

5. Interpolation formulas 

 

In Fig. 3 the corresponding values of 𝑥(𝑁∆) and 𝑥((𝑁 − 1)∆) are indicated by circles. Suppose 

that in the state 𝑥 = 𝛿 at 𝑡 = (𝑁 − 2)∆, the control 𝑢(1) is used, which determines 𝛿𝑡
(1)

 and the 

trajectory 𝑂𝐴.  
 

 
Fig. 3. Selecting interpolation formulas 

 

Suppose also that the value of 𝜔(2𝛿, (𝑁 − 2)𝛿) has already been calculated. This node in Fig. 

3 is denoted by the letter 𝐵. Then, to calculate ∇𝐸  corresponding to the trajectory 𝐴𝐶, one can use 

the simplest interpolation formula connecting the value of ω for the nodes 𝐵̅ and 𝐶̅: 

∇𝐸 =
𝜔(2𝛿, (𝑁 − 1)∆𝑗 − 𝜔(2𝛿, (𝑁 − 2)∆)

∆
𝛿𝑡
(1)
. 

In the general case, this formula for any values of 𝑥 and 𝑡 can be written as  

∇𝐸 =
𝜔(𝑥 + 𝛿, 𝑡 + ∆) − 𝜔(𝑥 + 𝛿, 𝑡)

∆
𝛿𝑡,                                        (15) 

where the state 𝑥 and the instant 𝑡 correspond to the node of the grid of variables under investigation, 

and (𝑥 + 𝛿) corresponds to the state at which the system will arrive from the state 𝑥 after the time 𝛿𝑡. 
Formula (15) is written for 𝑓(𝑥(𝑡), 𝑢(𝑡)) > 0. Otherwise, 𝑥 + 𝛿 in it should be replaced with 𝑥 − 𝛿. 

Taking into account interpolation (15), the value of 𝜔(𝑥, 𝑡) is determined from the formula 
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𝜔(𝑥, 𝑡) = min
𝑢
[𝐹(𝑥(𝑡), 𝑢(𝑡))𝛿𝑡 + ∇𝐸 + 𝜔(𝑥 + 𝛿, 𝑡)]. 

Suppose now that for the state 𝑥 + 𝛿 corresponding to the instant 𝑡 of application of the control 

𝑢, the value of 𝜔(𝑥 + 𝛿, 𝑡) has not yet been determined. Let, for instance, the value of 

𝜔(0, (𝑁 − 2)∆) not be calculated yet for the trajectory 𝑂𝐿 shown in Fig. 3. Then interpolation can 

be carried out at the nodes corresponding to the points 𝐷 and 𝐹: 

∆𝐸 =
𝜔(0, (𝑁 − 1)∆) − 𝜔(0,𝑁∆)

∆
(∆ − 𝛿𝑡

(2)
) 

or in the general case  

∆𝐸 =
𝜔(𝑥 | 𝛿𝑡  𝑡  |  ∆) − 𝜔(𝑥 + 𝛿𝑡  𝑡 |2 ∆)

∆
(∆ − 𝛿𝑡).                               (16) 

Taking into account (16), the value of 𝜔(𝑥, 𝑡) is determined as 

𝜔(𝑥, 𝑡) = min
𝑢
[𝐹(𝑥(𝑡), 𝑢(𝑡))𝛿𝑡 + ∇𝐸 + 𝜔(𝑥 + 𝛿, 𝑡 + ∆)] 

 

6. Computational procedure of modified dynamic programming 

 

The MDP method uses the block principle of solution [19] in order to reduce the number of 

accesses to external storage devices of the computer and to carry out all calculations within each 

block using only random-access memory. The main requirement for the volume of each block follows 

from this: a block must "fit" into RAM entirely, together with the computation program and all the 

information necessary to carry out machine calculation. Usually, blocks with the number of nodes for 

each variable from 5 to 15 are formed. 

After the blocks are formed, the important point is to determine the order in which the blocks 

are calculated. For a two-point boundary value problem, it is convenient to start computations from 

the block where the boundary conditions are located at the right end of the trajectory and end the 

computations with the block that contains the boundary conditions at the left end. Generally speaking, 

the blocks can be calculated almost in any order, but the labor intensity of the calculations decreases, 

and the accuracy of the results increases if such an order is chosen that the information of the previous 

block can be used as much as possible when calculating the current block. In this case, the number of 

extrapolations of the values of 𝜔(𝑥 + 𝛿, 𝑡 + ∆) for the 𝑥 + 𝛿 and 𝑡 + ∆  that are located in previously 

uncalculated blocks decreases dramatically. 

There is one more possibility of reducing the number of extrapolations of the values of 

𝜔(𝑥 + 𝛿, 𝑡 + ∆).. Suppose that, as shown in Fig. 4, the state 𝑥(𝑡) belongs to the boundary of blocks 

𝐵(𝑝, 𝑙) and 𝐷(𝑝, 𝑙 + 1), of which block 𝐷(𝑝, 𝑙) is being calculated at the moment, and block 𝐵(𝑝, 𝑙 +
1) had not yet been calculated.  
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Fig. 4. Illustration of the method of correction of 𝜔(𝑥, 𝑡) 

 

Suppose that the set of admissible controls determines five trajectories, of which trajectories 1, 

2, and 3 can be estimated from the information available in block 𝐵(𝑝, 𝑙), and to estimate trajectories 

4 and 5, it is necessary to extrapolate the values of 𝜔(𝑥 + 𝛿, 𝑡) and 𝜔(𝑥 + 𝛿, 𝑡 + ∆). Choose the 

optimal trajectory from trajectories 1, 2, and 3 and fix the corresponding value of 𝜔′(𝑥, 𝑡) in the block 

𝐵(𝑝, 𝑙).. Further, when calculating the block 𝐵(𝑝, 𝑙 + 1), we will correct 𝜔′(𝑥, 𝑡), by choosing the 

best one from trajectories 4 and 5 and comparing the obtained value of 𝜔′′(𝑥, 𝑡) with 𝜔′(𝑥, 𝑡). 
Unfortunately, if 𝜔′′ < 𝜔′, this method requires correction not only of the values of 𝜔(𝑥, 𝑡), but also 

of all subsequent values of 𝜔 calculated using the uncorrected value of 𝜔(𝑥, 𝑡). 
 

7. An example of using the modified dynamic programming method 

 

As an example of using MDP, consider the following problem: 

𝐸 (𝑥, 𝑢) =  ∫(𝑥2 + 𝑢2)𝑑𝑡 +  𝜆 

𝑇

0

[𝑥 (𝑇) −  𝛽]2 → 𝑚𝑖𝑛; 

𝑥̇ = 𝑢; 

𝑢 ∈  𝐸𝑢 = [𝑢 ∶  −2,−1, 0, 1, 2];                              (17) 

𝑥𝑚𝑖𝑛  ≤ 𝑥 (𝑡) ≤  𝑥𝑚𝑎𝑥; 

0 ≤ 𝑥(𝑡) ≤ 𝛽. 

Suppose, as before, that 𝑇 = 10, 𝜆 = 2.5, 𝛽 = 2, 𝑥𝑚𝑖𝑛 = 𝑀− = 0, 𝑥𝑚𝑎𝑥 = 𝑀
+ = 8, ∆=

1, 𝛿 = 1. Then problem (17) can be reduced to the following mathematical programming problem: 

𝐸(𝑥𝑘, 𝑢𝑘) = ∑ (𝑟𝑘
2 + 𝑢𝑘

2) + 2,5

𝑁−1−5

𝑘=0

[𝑥10 − 2]
2 → 𝑚𝑖𝑛;

𝑥𝑘+1 = 𝑥𝑘 + 𝑢𝑘;

𝑢𝑘 ∈ 𝐸𝑢 = (−2,−1, 0, 1, 2);
8 < 𝑥2 < 8;
0 < 𝑥11 < 2. }

  
 

  
 

 

 

Using the MDP method, we write this problem in the following form: 
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𝐸(𝑥, 𝑢) =∑[𝑥2(𝑡) + 𝑢2(𝑡)] + 2,5 [𝑥(𝑇) − 2]2 → 𝑚𝑖𝑛;

𝑥(𝑡 + 0𝑖) = 𝑥(𝑡) + 𝑢(𝑡)𝛿𝑡;

𝑢(𝑡) ∈ [2,    1, 0, 1, 2];
2 < 𝑥(𝑡) < 8;
0 < 𝑥(𝑇) < 2. }

 
 

 
 

                             (18) 

where the time instants 𝑡 correspond to the nodes of the grid of variables with a constant step ∆. 

The step 𝛿𝑡 depends on the value of the control action applied at each time instant and is 

determined from general formula (13): 

𝛿𝑡 = 𝑚𝑖𝑛 {
𝛿

[𝑓(𝑥(𝑡), 𝑢(𝑡))]
, ∆} = 𝑚𝑖𝑛 {

𝛿

[𝑢]
, ∆}. 

For 𝑢 = ±2, we find 𝛿𝑡 = 0.5; for the other values of 𝑢 we obtain 𝛿𝑡 = ∆= 1. 
When calculating 𝛿𝑡 = 0.5, it is necessary to have the interpolation formulas for calculating 

∇𝐸. For this purpose, we will use formula (15) if the interpolated values of 𝜔(𝑥, 𝑡) and 

𝜔(𝑢  |  𝛿, 𝑡  |  ∆) are already known, or formula (16), if the values of 𝜔(𝑥 + 𝛿, 𝑡 + ∆) and 

𝜔(𝑥 + 𝛿, 𝑡 + 2∆) are known. Considering that 𝛿 = ∆= 1, formulas (15) and (16) for 𝑢 > 0 will take 

the form 

∇𝐸 − (𝜔(𝑥 + 1, 𝑡 + 1)   𝜔(𝑥 + 1, 𝑡)𝛿𝑡;                                             (19) 

∇𝐸 − (𝜔(𝑥 + 1, 𝑡 + 1) −  𝜔(𝑥 + 1, 𝑡 + 2)(1 −𝛿𝑡).                               (20) 

If 𝑢 < 0, 𝑥 + 1 in (19) and (20) should be replaced with 𝑥 − 1.  
To calculate the values of 𝜔(𝑥 + 0, 𝑡 + 𝜇∆) = 𝜔(𝑥 + 1, 𝑡 + 𝜇) for 𝜇 = 1 and 𝜇 = 2, when the 

state 𝑥 + 1 is in a neighboring block, for which calculations have not yet been performed, we will 

use extrapolation formula for 𝜇 = 1 and 𝜇 = 2 as follows: 

𝜔(𝑥 + 1, 𝑡 + 1) = 3𝜔(𝑥, 𝑡 + 1) − 3𝜔(𝑥 − 1, 𝑡 + 1) + 𝜔(𝑥 − 2, 𝑡 + 1);            (21) 

𝜔(𝑥 + 1, 𝑡 + 2) = 3𝜔(𝑥, 𝑡 + 2) − 3𝜔(𝑥 − 1, 𝑡 + 2) + 𝜔(𝑥 − 2, 𝑡 + 2);            (22) 

Functional equation (11) is applicable to the optimization problem under consideration. Using 

the notation of problem (18), we obtain 

𝜔(𝑥, 𝑡) = min
𝑢(𝑡)

[(𝑥2(𝑡) + 𝑢2(𝑡))𝛿𝑡 + ∇𝐸 + 𝜔(𝑥(𝑡) + 𝑢(𝑡)𝛿𝑡, 𝑡 + 1)]. 

In this equation, 𝑥 and 𝑡 take on the discrete values 0, 1, 2, … , 8 and 0, 1, 2, … , 10, respectively, 

and  

𝑥(𝑡) + 𝑢(𝑡)𝛿𝑡 = {
𝑥(𝑡) + 1   when   𝑢 > 0;
𝑥(𝑡)          when    𝑢 = 0;
𝑥(𝑡) = 1   when  𝑢 < 0.

} 

To solve the problem by the MDP method, we divide the grid of variables into eight blocks and 

take the following order of calculating the blocks:  

𝐵(2, 1), 𝐵(2, 2), 𝐵(2, 3), 𝐵(2, 4), 𝐵(1, 1), … , 𝐵(1, 4). 

To store the optimal values of 𝜔(𝑥, 𝑡) and optimal controls 𝑢(𝑡), since the dimensionality of 

the problem is small, we form a single table for all blocks. 

The calculation of the first block is preceded by a preliminary procedure that limits the search 

area by excluding invalid nodes from the grid of variables. 

As a result of this procedure, we determine the values of 𝜔(𝑥, 𝑡) and the optimal controls for 

the boundary admissible nodes on the right side of the grid of variables. The values of 𝜔(𝑥, 10) are 
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known for 0 ≤ 𝑥 ≤ 2; states 𝑥 ≥ 3 at 𝑡 = 10 are invalid. For 𝑡 = 9, the minimum state from which 

𝑥(10) = 2 is attainable is 𝑥(9) = 4. In this case, 𝑢 = 𝑚𝑖𝑛𝐸𝑢 = −2. The states 𝑥(9) > 4, are 

therefore invalid. For 𝑡 = 8, the states 𝑥(8) > 6 are invalid. Let us calculate the values of 𝜔(𝑥, 𝑡) 
corresponding to this trajectory. Since the smallest value of 𝛿𝑡 is 0.5, we will carry out the calculations 

at 𝛿𝑡 = 0.5 instead of 𝛿𝑡 = ∆= 1. Decreasing the quantization step will increase the accuracy of 

calculating 𝜔(𝑥, 𝑡).  
In this case, there is no need to use the first computational procedure of dynamic programming 

for calculating 𝜔(𝑥, 4), as we did for the bloc 𝐵(2,1) when calculating 𝜔(𝑥, 9). 
 

8. Conclusion 

 

Modified dynamic programming does not lead either to a reduction in the number of nodes in 

the grid of variables, or to a decrease in the computational difficulties of analyzing local trajectories. 

Moreover, the amount of computation in comparison with the first computational procedure of 

dynamic programming increases significantly, which is due to the need for interpolation and 

extrapolation. The number of nodes of the grid of variables in MDP, if summed over all blocks, 

remains exactly the same as in the first or second computational procedure, regardless of the method 

of dividing the problem into blocks. The effect of reducing the dimensionality will be observed only 

if the direction of the preferred movement is well known and there is no need to carry out calculations 

in many blocks. 

Nevertheless, as shown in (18), the practical use of MDP leads to a significant reduction in the 

computing time in comparison with the first and second computational procedures, and this is 

explained by only one factor: the reduction in the number of accesses to external storage devices of 

the computer.  
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