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The problem of online calibration of navigational instruments is 

considered. Calibration of devices implies minimizing the 

deviations between the real values and the measurement data. In 

the problem under investigation, the trajectory of motion is traced 

with GPS, which is taken as the real values of the trajectory 

coordinates. The accelerometer and gyroscope measurement data 

can also be used to calculate the trajectory. It is required by 

calibrating the sensors to achieve matching of these values, with 

the proximity of trajectories implying a uniform metric. It is 

proved in the article that the integral metric can be used in solving 

the problem of sensor calibration. 
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1. Introduction 

 

Controlling an aircraft requires certain information about its condition. Some of this 

information is taken from sensors installed on the aircraft. This paper explores the possibility of 

eliminating systematic errors in the data obtained from the sensors. 

Sensors normally give electrical signals. These signals are then digitized in accordance with 

the purpose of the sensor. In the process of digitization, different dependencies can be used. For 

instance, load cells convert volts to quantities expressed in 𝑚/𝑠2. Sensor manufacturers usually set 

the conversion function when testing the sensors. 

However, over time, due to the deterioration of sensors operating on electromechanical 

principles, the application of the conversion function set by the manufacturing plant leads to errors, 

resulting in significant deviations from the real values. Therefore, it is necessary to adjust the 

conversion function in order to eliminate errors in the processing of flight data from the sensors. 

The process of adjusting the conversion functions in such a way as to ensure adequacy is called 

calibration. 

In this paper, we investigate the possibility of adjusting the data obtained from sensors 

installed on board unmanned aerial vehicles using the additional information about the flight and 

propose a solution concept, as well as an appropriate solution algorithm. In addition, the correctness 

of the solution concept is proven mathematically. 
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2. Problem statement 

 

The main navigation devices used in aviation are accelerometers and gyroscopes. 

Accelerometers measure aircraft’s loads. By load, we mean the ratio of the sum of all aerodynamic 

forces acting on the aircraft, with the exception of gravity, and the engine thrust to gravity [1, P.47]. 

Load can be expressed as follows: 

 

𝑛 =
𝑃 + 𝑅𝐴

𝑚𝑔
 ,  

 

where 𝑃 is the thrust of the aircraft engines, 𝑅𝐴 is the sum of the aerodynamic forces acting on the 

aircraft, 𝑚 is its mass, and 𝑔 is the gravitational acceleration. Gyroscopes provide orientation angles 

that determine the position of the aircraft in space 

relative to the earth. To interpret them, we first 

introduce the coordinate systems being used. 

Let us denote the fixed-in-the-earth coordinate 

system by 𝑂𝑔𝑥𝑔𝑦𝑔𝑧𝑔 and the co-ordinate system fixed 

to the aircraft by 𝑂𝑥𝑦𝑧. For clarity, it is assumed that 

the 𝑂𝑧𝑔 axis is directed vertically upward in the 

considered point, and the 𝑂𝑔𝑥𝑔 and 𝑂𝑔𝑦𝑔 axes are 

directed so that the 𝑂𝑔𝑥𝑔𝑧𝑔 plane is perpendicular to 

𝑂𝑔𝑧𝑔, forming a right-handed coordinate system. The 

𝑂𝑥𝑦𝑧 coordinate system fixed to the aircraft is 

introduced such that when the aircraft stands on the 

ground, the 𝑂𝑥,  𝑂𝑦  and 𝑂𝑧 axes are parallel to the 

𝑂𝑔𝑥𝑔, 𝑂𝑔𝑦𝑔 and 𝑂𝑔𝑧𝑔 axes of the fixed-in-the-earth 

𝑂𝑔𝑥𝑔𝑦𝑔𝑧𝑔 coordinate system, respectively.  

The orientation of the aircraft relative to the 

ground is determined by the ψ , 𝜗 , 𝛾 angles [1, P.431; 2 P.9]. Here ψ is called the yaw angle – the 

angle between the 𝑂𝑔𝑥𝑔 axis and the projection of the 𝑂𝑥 axis on the horizontal 𝑂𝑔𝑥𝑔𝑧𝑔 plane; 𝜗 is 

the pitch angle – the angle between the 𝑂𝑥 axis and the horizontal 𝑂𝑔𝑥𝑔𝑧𝑔 plane; 𝛾 is the roll angle 

– the angle between the 𝑂𝑧 axis and the horizontal 𝑂𝑔𝑥𝑔𝑧𝑔 plane (Fig. 1). 

Let 𝑝𝑥(𝑡), 𝑝𝑦(𝑡) and 𝑝𝑧(𝑡) denote the values of the load 𝒏 measured by the accelerometer in 

volts at each instant of time t. Suppose that the functions 𝑘𝑥(𝑝𝑥), 𝑘𝑦(𝑝𝑦), 𝑘𝑧(𝑝𝑧) are conversion 

functions that allow calculating the physical values of the loads: 

 

{

𝑛𝑥 = 𝑘𝑥(𝑝𝑥),

𝑛𝑦 = 𝑘𝑦(𝑝𝑦),

𝑛𝑧 = 𝑘𝑧(𝑝𝑧).

 (1) 

 

Given that the spring mechanisms of the accelerometer lose their elasticity over time, we can 

assume that the values of the loads change proportionally to a certain coefficient. On the other hand, 

changes in the sensitivity threshold can lead to systematic errors in the accelerometer 

measurements. Combining these two cases, we can assume that by applying formulas (1) to the 

quantities 𝑝𝑥, 𝑝𝑦, 𝑝𝑧, some intermediate values �̂�𝑥, �̂�𝑦 and �̂�𝑧 for loads are determined, which in 

turn are bound with real values of 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 of the loads by the following linear dependence 

formulas: 

 
 

Fig.1. Orientation angles 
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{

𝑛𝑥 = 𝛼1�̂�𝑥 + 𝛽1,
𝑛𝑦 = 𝛼2�̂�𝑦 + 𝛽2,

𝑛𝑧 = 𝛼3�̂�𝑧 + 𝛽3,

 (2) 

 

where 𝛼1, 𝛼2, … , 𝛽3 are certain coefficients. Finding these coefficients determines the notion of the 

sensor adjustment. Thus, additional information is required to find them. The proposed approach to 

finding the coefficients is based on the fact that the GPS measuring device operates on board the 

aircraft during a certain brief period of time 𝑇 from the moment of flight 𝑡 = 0, and on the basis of 

its data, it is possible to determine the speed of the aircraft during that period. Thus, GPS data 

related to the initial period of flight can be considered sufficiently reliable. 

Loads are measured relative to the coordinate system fixed to the aircraft. For a comparison 

with GPS data, they must be expressed in the coordinate system relative to the earth. 

Let us denote the components of the aircraft’s load vector in the 𝑂𝑔𝑥𝑔𝑦𝑔𝑧𝑔 coordinate system 

respectively by 𝑛𝑔𝑥, 𝑛𝑔𝑦, 𝑛𝑔𝑧. Then the conversion formulas in the matrix notation will be as 

follows [3, p.23-25]: 

 

(

𝑛𝑔𝑥

𝑛𝑔𝑦

𝑛𝑔𝑧

) = 𝐴𝑅(ψ)𝐴𝑇(𝜗)𝐴𝐾(𝛾) (

𝑛𝑥

𝑛𝑦

𝑛𝑧

),  

where 

 

𝐴𝐾(𝛾) ≡ (
1 0 0
0 cos 𝛾 − sin 𝛾
0 sin 𝛾 cos 𝛾

),    𝐴𝑇(𝜗) ≡ (
cos 𝜗 − sin 𝜗 0
sin 𝜗 cos 𝜗 0

0 0 1
),  

 

𝐴𝑅(ψ) ≡ (
cosψ 0 sinψ

0 1 0
− sin ψ 0 cosψ

).  

 

Depending on the nature of the loads [1], it is possible to calculate the acceleration vector 

𝒂(𝑡) = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) that depends on the forces acting on the aircraft during flight (gravity, 

aerodynamic drag, engine thrust): 

 

{

𝑎𝑥 = 𝑔 ∙ 𝑛𝑔𝑥 ,

𝑎𝑦 = 𝑔 ∙ (𝑛𝑔𝑦 − 1),
𝑎𝑧 = 𝑔 ∙ 𝑛𝑔𝑧 ,

  

 

where 𝑔 is the gravitational acceleration. Let us denote by 𝑽(𝑡) = (𝑉𝑥(𝑡), 𝑉𝑦(𝑡), 𝑉𝑧(𝑡)) the velocity 

vector determined on the basis of the GPS device data. The problem of determining conversion 

functions (2) for the sensor adjustment implies finding coefficients 𝛼1, 𝛼2, … , 𝛽3 such that for each 

𝑡 ∈ [0,1], the functional 

 

𝐽(𝛼1, 𝛼2, … , 𝛽3) ≡ ‖𝑉(𝑡) − ∫ 𝑎(𝜏)𝑑𝜏

𝑡

0

‖ (3) 

 

gets the minimum value. 
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In accordance with the logic of the problem, approximation (3) should be regular. In other 

words, the approximation should be considered in the space of 𝐶-continuous functions. However, in 

this case, the problem is non-smooth and it becomes necessary to apply one of non-smooth 

optimization methods [4, 5]. In practice, the approximation problem is often considered with a 

quadratic functional. The main reason for this is the availability of easily applicable algorithms [6] 

for minimizing the quadratic functional. 

Indeed, let us consider the problem of finding the minimum of functional (3) when it is 

expressed by the norm 𝐿2 (quadratically integrable functions). Denote by (𝑎𝑖𝑗), 𝑖, 𝑗 = 1, 2, 3 the 

elements of the matrix 𝐴𝑅(ψ)𝐴𝑇(𝜗)𝐴𝐾(𝛾): 

𝑎11 = cosψ cos 𝜗 , 𝑎12 = cosψ sin 𝜗 sin 𝛾 − sinψ cos 𝛾 , 𝑎13 = cosψ sin 𝜗 cos 𝛾 +
sinψ sin 𝛾 , 𝑎21 = sin ψ cos 𝜗 , 𝑎22 = sinψ sin 𝜗 sin 𝛾 + cosψ cos 𝛾 , 𝑎23 = sinψ sin 𝜗 cos 𝛾 −

cosψ sin 𝛾 , 𝑎31 = − sin 𝜗 , 𝑎32 = cos 𝜗 sin 𝛾 , 𝑎33 = cos 𝜗 cos 𝛾. 

Then functional (3) can be written as follows: 

 

𝐽(𝛼1, 𝛼2, … , 𝛽3) = √∫ |𝑉(𝑡) − ∫ 𝑎(𝜏)𝑑𝜏

𝑡

0

|

2

𝑑𝑡

𝑇

0

=  

 

{∫ [(𝑉𝑥(𝑡) − ∫ 𝑎𝑥(𝜏)𝑑𝜏

𝑡

0

)

2

+ (𝑉𝑦(𝑡) − ∫ 𝑎𝑦(𝜏)𝑑𝜏

𝑡

0

)

2

+ (𝑉𝑧(𝑡) − ∫ 𝑎𝑧(𝜏)𝑑𝜏

𝑡

0

)

2

] 𝑑𝑡

𝑇

0

}

1
2

= 

 

{∫ ([𝑔 ∫ (𝑎11(𝛼1�̂�𝑥 + 𝛽1) + 𝑎12(𝛼2�̂�𝑦 + 𝛽2) + 𝑎13(𝛼3�̂�𝑧 + 𝛽3)) 𝑑𝜏

𝑡

0

− 𝑉𝑥(𝑡)]

2

+

𝑇

0

 

 

+ [𝑔 ∫(𝑎21(𝛼1�̂�𝑥 + 𝛽1) + 𝑎22(𝛼2�̂�𝑦 + 𝛽2) + 𝑎23(𝛼3�̂�𝑧 + 𝛽3) − 1)𝑑𝜏

𝑡

0

− 𝑉𝑦(𝑡)]

2

+ 

 

+ [𝑔 ∫ (𝑎31(𝛼1�̂�𝑥 + 𝛽1) + 𝑎32(𝛼2�̂�𝑦 + 𝛽2) + 𝑎33(𝛼3�̂�𝑧 + 𝛽3)) 𝑑𝜏

𝑡

0

− 𝑉𝑧(𝑡)]

2

)}

1
2

. 

 

To find the minimum of the obtained function, we calculate the partial derivatives 
𝜕𝐽

𝜕𝛼𝑘
 and 

𝜕𝐽

𝜕𝛽𝑘
 

and equate them to zero. Thus, the calculation of the minimum of the functional 𝐽(𝛼1, 𝛼2, … , 𝛽3) 

comes down to solving a system of linear algebraic equations for the variables 𝛼1, 𝛼2, … , 𝛽3 and is 

easily solved. 

As we can see, in the previous paragraphs, to find the coefficients 𝛼1, 𝛼2, … , 𝛽3, the norm 

expressing functional (3) was understood in the 𝐿2 sense. Let us prove mathematically that in a 

number of natural conditions put forward for the original problem, the problem considered with the 

quadratic functional can be conformed to the solution of the problem considered with the regular 

functional. 
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3. Substantiation of the application of the integral criterion 

 

As mentioned above, functional (3) must be minimized in the regular metric. However, when 

solving the problem, the 𝐿2 metric was used instead of the regular metric. To substantiate the use of 

the 𝐿2 metric, it is necessary to conform the 𝐿2 metric to the regular metric. In the general case, one 

can easily construct an example where the norm of the function in the 𝐿2 sense, being arbitrarily 

small, can remain larger than the constant defined in the 𝐶 metric. 

On the other hand, the function participating in functional (3) is subject to certain restrictions, 

since it reflects the speed of the aircraft. Thus, the acceleration that the aircraft can get depends on 

the power of its engines and is always limited to a certain constant. Within the indicated restrictive 

condition, it can be shown that the sequence minimizing functional (3) in the 𝐿2 sense is also 

fundamental in the regular metric. In fact, the value of the regular metric is bounded from above by 

2/3 order of the value of the 𝐿2 metric. A mathematical proof of this is given in the following 

theorem. 

Theorem. Denote by Ω the set of functions satisfying the conditions 𝑢 ∈ 𝑊2
1[0,1] and 

|𝑢′(𝑡)| ≤ 𝐾. Let us prove that for any 𝑢 ∈ Ω  

 

‖𝑢‖
𝐶[0,1]

3
2 ≤ √3𝐾‖𝑢‖𝐿2[0,1], (4) 

 

where 
‖𝑢‖𝐶[0,1] = max

 𝑡∈[0,1]
|𝑢(𝑡)|,  

 

‖𝑢‖𝐿2[0,1] = √∫|𝑢(𝑡)|2𝑑𝑡

1

0

.  

 

Proof. Suppose that 

 
‖𝑢‖𝐶[0,1] = 𝑢∗ (5) 

 

and this value is realized at a point 𝑡∗ ∈ [0,1], i.e. 
|𝑢(𝑡∗)| = 𝑢∗. 

According to the definition of norms ‖𝑢‖𝐶[0,1] and 

‖𝑢‖𝐿2[0,1], for any 𝑢 ∈ Ω, (−𝑢) ∈ Ω and ‖−𝑢‖𝐶[0,1] =

‖𝑢‖𝐶[0,1] and ‖−𝑢‖𝐿2[0,1] = ‖𝑢‖𝐿2[0,1]. Therefore, we can 

assume that the function 𝑢(𝑡) passes through the point 

𝐵(𝑡∗, 𝑢∗), and 𝑢(𝑡∗) = 𝑢∗ (Fig. 2). Denote by 𝐴(𝑡1, 0) and 

𝐶(𝑡2, 0) the points of intersection with the 𝑂𝑡 axis of the 

straight lines that pass through point 𝐵 and whose 

equations are written in the form 𝑢 = 𝑢∗ ± 𝐾(𝑡 − 𝑡∗). Let 

us construct such a function 

 

�̃�(𝑡) = {

0, 𝑡 < 𝑡1,
𝑢∗ + 𝐾(𝑡 − 𝑡∗), 𝑡1 ≤ 𝑡 ≤ 𝑡∗,

𝑢∗ − 𝐾(𝑡 − 𝑡∗), 𝑡∗ ≤ 𝑡 ≤ 𝑡2,
0, 𝑡 > 𝑡1.

  

 
Fig.2. Construction of the barrier 

function 



A.B. Pashayev, E.N. Sabziev / Informatics and Control Problems 43 No.1 (2023)  

 
 

82 

 

and consider its restriction to [0,1]. From the condition |𝑢′(𝑡)| ≤ 𝐾, it is clear that the graph of 

each function 𝑢 ∈ Ω passing through the point 𝐵(𝑡∗, 𝑢∗) cannot be lower than the graph of the 

function �̃�(𝑡), in other words, 𝑢(𝑡) ≥ �̃�(𝑡) and 

 
‖�̃�(𝑡)‖𝐿2[0,1] ≤ ‖𝑢(𝑡)‖𝐿2[0,1] (6) 

 

The function �̃�(𝑡) constructed in this fashion is called a barrier function. The norm 𝐿2[0,1] of 

barrier functions corresponding to all functions with ‖𝑢‖𝐶[0,1] = 𝑢∗ takes different values 

depending on which point of the section the point 𝑡∗ is located. ‖𝑢(𝑡)‖𝐿2[0,1] takes the minimum 

value when the point 𝑡∗ is an endpoint of the section [0,1]: 𝑡∗ = 0 or 𝑡∗ = 1. This corresponds to 

one of the following two cases for the function �̃�(𝑡): 

 

I. 𝑡∗ = 0, 
𝑢∗

𝐾
< 1 və �̃�(𝑡) = {

𝑢∗ − 𝐾𝑡, 0 ≤ 𝑡 <
𝑢∗

𝐾
,

0,
𝑢∗

𝐾
≤ 𝑡 ≤ 1.

 

 

II. 𝑡∗ = 1, 
𝑢∗

𝐾
< 1 və �̃�(𝑡) = {

0, 0 ≤ 𝑡 < 1 −
𝑢∗

𝐾
,

𝑢∗ + 𝐾(𝑡 − 1), 1 −
𝑢∗

𝐾
≤ 𝑡 ≤ 1.

 

 

First, we consider the first case – according to the definition of the norm, 

 

‖�̃�(𝑡)‖𝐿2[0,1] = √∫|�̃�(𝑡)|2𝑑𝑡

1

0

 .  

 

Taking into account that ∫ |�̃�(𝑡)|2𝑑𝑡
1

0
= ∫ |�̃�(𝑡)|2𝑑𝑡

𝑢∗
𝐾

0
+ ∫ |�̃�(𝑡)|2𝑑𝑡

1
𝑢∗
𝐾

 and �̃�(𝑡) = 0 on the section 

[0, 1], 

‖�̃�(𝑡)‖𝐿2[0,1] = √∫ (𝑢∗ − 𝐾𝑡)2𝑑𝑡

𝑢∗
𝐾

0

=
1

√3𝐾
(𝑢∗)

3
2 .  

 

Finally, from equality (5) 

 

‖�̃�(𝑡)‖𝐿2[0,1] =
1

√3𝐾
‖𝑢‖

𝐶[0,1]

3
2 . (7) 

 

A similar result is obtained in the second case. Given equation (7) in (6), we obtain inequality (4). 
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4. Conclusion 

 

The problem of sensor calibration based on the proximity of the trajectory tracked with GPS 

and the data of navigational instruments in a uniform metric is investigated. Normally, effective 

algorithms based on minimization of data divergence in the integral metric are used to solve such 

problems. It is proved in this article that under certain natural conditions of problems under 

investigation, integral metric can act as a major of the uniform metric. Thus, a substantiation of 

applying the method of minimization of standard deviation in the problem under investigation is 

given. This approach can be also applied to other identification and modeling problems instead of 

the uniform metric. 
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