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1. Introduction

In his monograph [1], N.N. Moiseyev considered one optimal control problem described by a
system of ordinary differential equations with a non-type quality criterion and proved the necessary
optimality condition in the form of L.S. Pontryagin's maximum principle [2-4].

In this study we consider a similar optimal control problem, but with a more general, multipoint
quality functional.

Under the assumption of openness of the control domain, we prove an analogue of Euler's equa-
tion and establish the second-order necessary optimality conditions.

2. Problem statement

Suppose that the controlled continuous process on a given time segment [t,, t1] (to, < t1) is
described by a system of ordinary differential equations

x = f(t,x,u), tEe€/tyt] (D
with the initial condition

x(to) = Xo. (2)
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Here, f(t,x,u) is a specified n-dimensional vector function that is continuous in the set of
variables together with partial derivatives in (x, ) up to and including the second order, x, is a spec-
ified constant initial vector, and u(t) is a - dimensional, piecewise continuous (with a finite number
of break points of the first kind) vector of control actions with values from the specified non-empty,
bounded and open setU c R, i.e.,

u(t) e U c R, t € [ty, tq]. 3)

Such control function will be called admissible controls.
It is assumed that there is a unique, continuous and piecewise smooth solution x(t) of Cauchy
problem (1), (2).

Consider the problem of the minimum of the terminal functional
t1 tg

S@) = o(x(Ty), x(Ty), .., x(Ty)) + f f F(t,s,x(t),x(s))ds dt (4)
to to
with constraints (1)-(3).

Here, T;,i = 1,k (to < Ty < T, < -+ < T} < t;) are specified points, F(t,s, a, b) is a speci-
fied scalar function that is continuous in the set of variables together with partial derivatives in (a, b)
up to and including the second order, ¢(c, ..., cx) is a twice specified continuously differentiable
scalar function.

The admissible control u(t) that affords the minimum value of functional (4) under constraints
(1)-(3) will be called an optimal control, and the corresponding process (u(t), x(¢)) an optimal pro-
cess.

The aim of the article is to obtain first- and second-order necessary optimality conditions in the
problem under investigation.

3. Calculating variations of the quality criterion

Suppose that (w(t), x(£)) and (&(t) = u(t) + Au(t), %(t) = x(t) + Ax(t)) are two admissi-
ble processes.
The increment of the quality functional will be written as follows:

AS(u) = S(@) — S(w) = @(x(T1), (T3, ..., X(Ti)) —

—<p(x(T1),x(T2), ...,x(Tk)) + f f (F(t, s,x(t), x(s)) — F(t, s,x(t),x(s)))ds dt. (5)

It is clear that the increment Ax(t) (()Jf tohe trajectory x(t) is the solution to the problem
Ak () = (&, %(6),1(0) — £(&,x(8),u(t)), (6)
x(ty,) = 0. 7

Suppose that ¥ (t) is an as yet arbitrary n-dimensional vector function. We will introduce an
analogue of the Hamilton-Pontryagin function in the following form:

H(t,x,u, ) =y'f(t, x,u).

Here and further in the text, the dash (') indicates a transpose operation.
From formula (6) we get that

f Y ()Ax(t)dt = f[H(t,f(t),ﬁ(t),l/)(t)) — H(t,x(®),u(®), Y (¢))]dt. (8)

68



K.B. Mansimov, I.F. Nagiyeva / Informatics and Control Problems 43 Issue 2 (2023)

Taking into account identity (8), from increment formula (5) of quality functional (4) we get
that

AS(w) = @(%(Ty), x(Ty), ..., %(Ty.)) —

t1 g

—(x(T), x(Ty), ., x(Ty)) + f f (F(t, s, %(t),%(s)) — F(t, s,x(t),x(s))) ds dt +

to to
t1

f Y ()Ax(t)dt — f [H (¢, %), u(0), () — H(t, x(6), u(®),p(©)]dt.  (9)
to
From formula (9) applying the Taylor formula to a separate summand, we get that

k !
AS(w) = Z dg (X(T1)'X(T2), ...,x(Tk))

s aCi A.X'(Tl)‘l‘
k K 2
1 sy 00" (x(T1), x(T2), ..., x(Ty)
+§ZZAx (T) o' (x(T, xac: x k)Ax(Tj)+01<Z||Ax(Ti)|| >+
i=1j=1 i1
+ f Y' () Ax(t)dt —
t

_ j [GH (6,2 (), u(D), p(©))

OH'(t,x(6), u(®), (1))
0x Ax(6) = Jdu

Au(t)l dt —

Ax(t) +

_Z f (0 OH' (£, x(t), u(t), (1))
0x?

OH' (t, x(1), u(t) YD)
Judx

oH' (£, x(), u(t), P(0))

+2 4u' () .

t1

]02[(|IAx(t)II+IIAu(t)II) dt +

to

Ax(t) + 4u'(t)

Au(t)l dt —

Ax(t)ds dt +

J J doF' (t S, x(t) x(s))

Ax(s)ds dt +

j J JdF' (t S, x(t) x(s))

f j‘l (¢ )OF (t,séxgt),x(s))Ax(t)_}_
a

aF(t s, x(t) x(s))
dadb

oH (t,x(£), u(®), P(v))
db?

BF(t, s, x(t), x(s))
dbda

+Ax'(t) Ax(s) + Ax'(s)

t1 &g

Ax(s)l dsdt + f f os([Iax ()| + [|Ax(s)]I]1?)ds dt . (10)

Ax(t) +

+A4x'(s)
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Clearly, by virtue of condition (7)
t

Ax(t) = fA)'c(T)dT.
to
Therefore
21
Ax(T;) = f a;(t)Ax(t)dt, (11D
to
where «a;(t) is characteristic function of the segment[¢,, T;]
Therefore, increment formula (10) can be written in the form

t1 k ,
AS(u) = f Zal-(t) 09 (x(Tl)'x(TZ)’""X(T"))Afc(t)dt+

D= aCi
1% iy PO XM, x(TD) < e i
+§ZUZ x'(T) D x(T;) + o, ;n x(ll| |+
+f f faF,(T'S'gf)'x(s)) dr|Ax(t)ds dt +
+f f faF,(s'T';lfs)'x(t)) dr|Ax(t)ds dt +
- o to Lt ]
+% j ] le’(t)a F(t‘sé’;(zt)’x(s))m(t) + a2 F(tg;;;)'x(s))znx(s) +
to to
2 2
() SO gy 0y gy T S'az(f)’x(s))ﬂx(s)] dsdt +
t1 t
+ [ [ osttiaxol + laxe)nas ac +
to to
+f1/)’(t)A5c(t)dt—f faHI(T'x(T;';(T)'¢(T)) dT]AJ’C(t)dt—

t1

~ f OH' (£, x(8), u(t), Y(2)) 9*H(t,x (1), u(®), Y(©))

0x?

02H(t, x(), u(t), ¥ (1))

Ax(t) +

L
7u Au(t)dt—if IAx (t)

to

02H(t, x(), u(t), Y(@))

+24u'(t) Tudx Ax(t) + Au'(t) F Au(t) —
- f o, (IAx@Il + 1Au(® D). (12)

to
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Suppose that ¥ (t) is the solution of the equation

t1 .
b(E) = f aH(T,x(T)é;t(T)'l/)(T)) _Z“i @ )6<,0 (x(Ty), xa(z2 Lx(TY)

_ f j‘l oF (x, s,x(r),x(s)) f j‘ oF (s, 7, x(s) x(1)) e ds
da '

(13)

Then increment formula (12) will take the form

k k 2
AS(u) = %Z Z Ax'(T;) ! w(X(Tl)be(;zC)', ""x(T"))Ax(T,-) +
1Y)

i=1j=1
t1 t1

+% f j [Ax'(t)a F(t’s’a’;(zt)’x(s))Ax(t) + a2 F(t'f,)':a(;)'x(s))zlx(s) +

0%F (t,s,x(t), x(5)) 0%F(t,s,x(t), x(s))
dbda ob?

B j H’ (¢, x(6), u(t), Y(L))
ou

to to

+A4x'(s)

Ax(t) + Ax'(s) Ax(s)l dsdt —

tq 5
Au(O)dt - % f l v H(t,x(?;clzt(t)ﬂp(t)) Ax(®) +

0 92H(t, x(t), u(t), p(1))
ou?

02H(t, x(©), u(t), Y (1))
dudx

K 2
> lax(l

t1

- J oz ([IAx (O + llAu(®) (1> dt. (14)
to
Suppose that € > 0 is an arbitrary sufficiently small in absolute value number, andéu(t) €
U,t € [ty t,] is an arbitrary piecewise continuous and bounded r-dimensional vector function. Then,
by virtue of the openness of the control domain U the special increment of the control u(t) can be
determined from the formula

+24u' ()

Ax(t) + Au'(t)

t1 t1

* j f o3 ([IAx ()]l + |Ax(s)[1]2)ds dt —

to to

Au(t)l dt —

Au (t) = € du(t),t € [ty tq]. (15)

Suppose that Ax,(t) U is the special increment of the trajectory x(t) corresponding to the in-
crement of the control u(t).
From the estimates established, for instance, in [2, 4], it follows that

lAx(OIl < L fIIAu(T)IIdT, t € [to, t4],

where L = const > 0 is some constant.
From this we get that

IAx. (DIl < lelL JIISu(T)IIdT, t € [to, ta]. (16)

Taking into account formulas (15) and (16) we prove the validity of the expansion
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Ax.(t) = € 6x(t) + o(e; t), (17)

where &x(t) (trajectory variation) is an n-dimensional vector function, which is the solution of the
equation in variations [3]

si(t) = L& xgi)’u(t)) sty + L& x(,gi)'u(t)) Su(b), (18)

5x(ty) = 0. (19)

Taking into account formula (15) and decomposition (17), the special increment of the quality
functional is as follows

S(u + Au,) — S(u) = —¢ f 6H’(t,x(t33,;(t),zp(t))

to

k k 2
%Zz(sx,(,rl)a (p(X(Tl),X(Tz), ...,X(Tk)) 6X(T]) +

ou(t)dt +

aCl’aCj
t1 t1 ,

+= f f [ oo 2P Sax(zt) X)) 5oy + 65 0) F(t‘zza(;)‘x(s))ax(s)+

pox (9 TS O D) 5y 4 g 2L S;,’;(f)'x(s))ax(s)] dsdt -
, 1 2 2

—% tf 5 (6)2 H(t’x(?;(t)’w(t)) 5x(0) + 26w (6) H(t’x(;i’;(t)"p(t))ax(t) +
° 2
rou(n’ H(, x(ta)l';j(t)' y(®) 6u(t)l dt + o(e?), (20)

It follows from expansion (20) that the first and second variations (in the classical sense) of
functional (4) respectively have the following form:

¢ OH' (t,x(0), u(t), P(D))

51S(u: éu) = — j o sSu(t)dt, (21)
to
k k
2¢(a _ s 02(x(T), x(Ty), ..., x(Ty))
6°S(u:du) = ZZ 6x'(T;) dcac, 6x(Tj) +
F L 0 (6, x(0,x(s)) 9% (b5, x(8), x(s))
f” ® - 5x(t) + 6x' () - 5x(s) +
o to ) .-
vox' () 2 (t’;’b’;(:)’x(s)) 5x(6) + 8 (5) L S(;zgt)’x(s))ax(s)] dsdt —
_ j [ax'(t)a H’(t,x(g);zu(t),w(t)) 5x(6) + 26u'(6) H'(t'xg%l;(t).w(t)) 5x(6) +
0 ) ,
e i (& x(;)llzu ©,3®) 6u(t)l dt + o(e2). 22)
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4. Necessary optimality conditions

Taking into account the main result of the calculus of variations (see, e.g., [3, 4]), we obtain
from relations (21) and (22) that the optimality of the admissible control w(t) requires that the rela-
tions

t1
f OH'(t,x(t), u(®), (1))

E du(t)dt =0, (23)

to

k
s 020 (x(Ty), x(T), .., x(T))
DD, 8x (M e 6x(Ty) +

i=1j=1
t1 tg

2 2
f f [6 @ )6 (¢, sax(zt) x(s))6 o + Sx,(t)a F(t, Z,;Ca(z),x(s)) 5x(s) +

02F(t,s,x(t), x(s)) 0%F (t,s,x(t), x(5))
dbda b2

ty
L JOPH(t x(),u(t), Y (t) 02H(t, x(t),u(t), y(t)
_f léx © ( 0x? ) ( Judx )

to to

+6x'(s)

6x(t) + 6x'(s) 6x(s)l dsdt —

ox(t) + 26u'(t) ox(t) +

2
o P HEHOHO400)

hold for all Su(t) € R",t € [to, t;1].
From identity (23) follows

6u(t)l dt >0 (24)

Theorem 1. The optimality of the admissible control w(t) requires that the relation

oH(6,x(8),u(6),%())
Ju

=0 (25)

hold for all 6 € [t,,t;).

Here 6 € [t,,t,) is an arbitrary point of continuity of the controlu(t).

Necessary condition of optimality (25) being a first-order necessary optimality condition is an
analogue of Euler's equation (see, e.g., [2, 6]) for the problem under investigation.

Each solution of the analogue of Euler's equation will be called a classical extremal. The num-
ber of classical extremals can be quite large (see, e.g., [5, 6]). Therefore, in order to "narrow down"
the set of classical extremals, we must have second-order necessary optimality conditions.

Of course, inequality (24) is a second-order necessary optimality condition. But it is implicit.

We derive from it the second-order necessary optimality conditions of a constructive nature.

The solution of equation in variations (18)-(19) allows the following representation (see, e.g.,
[5]): .

5x(t) = f Fe, 0L xgl)’ “@) s (0yar, (26)
to
where F(t,7) is a (n X n) matrix function, which is the solution to the problem
Bf(r,x(r),u(r))

dx

E(t,7) = —F(t, 1)

F(t,t) =E
where E' is an identity matrix.
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Introducing the notation

00 = £t L xéz)’”(r))
formula (26) is written in the form t
5x(t) = f 0(t, D)su(r)dr. 27)
It follows from (27) that t ’
Ax(T,) = f a,(0)0(T,, T)su(t)dr. (28)

to

Using formula (28), we get that

k k 2
z 2 53 (1) (p(x(Tl)'at(,gzc)f - x(T) 5x(T)) =
i0€;

i=1 j=1
th Bk k

B j JZz“i(f)“i(s)5u’(T)Q’(Ti,T)a <p(x(T1)'x(T2)’""x(T"))Q(T,-,s) su(s)dsdr. (29)

dc;0c;
to to i=1j=1 v

Further, using representation (27) according to the scheme similar to the scheme of [6, 7], we

prove that
t1

02H(t, x(£), u(t), Y (1))

f l(Sx’(t)a H(t’x(gy’cf(”’w(”) 5x(t) + 26u'(£) - 5x(t) +
to
PRLLICIHCRTC o P

0x?2

£t t ,
= f f 5u’<a)< f 0t a)’ H(t'x(t)'u(t)'¢(t))Q(t,ﬁ)dt>8u(ﬁ)dadﬁ+

to to max(a,f)

t1

af

to

dt +

Q(t,)ou(a)da

J s () 0%H (t,x(atl)l,aljc(t),lp(t))

to

2
+ f 6u’(t)a H(t'x(gl’;;(t)’lp(t)) su(t)dt, (30)

da? dadb

0%F(t,s,x(t),x(s)) 0%F (t,s,x(t), x(5))
dbda 0b?

-1 5u’<a)l | ( | ALK F(t’s;,’;it)"‘“))oa.mdt>ds+

to to max(a,B)

lh 2 2
f f [5x’(t) 02F (t,s,x(t),x(s)) 5(6) + 8¢ (D 02F (t,s,x(t), x(5)) 53:(s) +

to to

+6x'(s)

ox(t) + 6x'(s)

5x(s)l dsdt =
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t T b , -
+f f Q' (¢, a)a F(t'zgz)'x(s))()(s,ﬁ)ds dt +
a |p |
t1 T tq , k.
+f fQ’(s,oc)a F(t'gljc;:l)'x(s))Q(s,ﬁ)dt ds +
a |p |
t1 ty ,
+ f ( 0’ F(t’séz(zt)’x(s))Q(s, ﬁ)ds) dt] Su(B)dadp. 31)
to max(a,B)

Introducing the notation

AL 92(x(Ty), x(Ty), ..., x(Ty))
K@) ==Y Y a(@a (B (T, 0) o222 2l o7, g)
i=1 j=1 e
t1
azH ) ) )
* j Q'(t,a) (tx(?x?(t) YO) ¢, pye -

max(a,B)

%1
- CTR H(t'sézgt)'x(s))Q(t.ﬁ)dt—

2 _
‘f f Q') F“’Z’;‘;?"‘“” Q(s, B)ds | dt —

2 _
_f f ¢60)° F(t'sa';a(?'x(s))cz(s,ﬁ)dt ds

| B |
t1 ty ,
< 0'Cs, a:)a F(t, S;;(Zt),x(s)) Q(s,ﬁ)ds) it
to \max(a,B)

and taking into account identities (29)-(31), we get from inequality (24) that along the optimal control
tl tl

J J6u’(a)K(a,,8)6u(ﬁ)dadﬁ+
to to

t
2
f su' ()2 H(t’x(;i’a’;(t)"/’(t)) 0(t, @)du(a)da

to

t1

+2 |

to

dt +

t1 )
+ f su'(6) H(t’x(?:;(t)’lp(t)) Su(t)dt < 0. (32)

to

Thus, we have proven

Theorem 2. The optimality of the classical extremal u(t) requires that inequality (32) hold for
all 5u(t) € R™, a € [ty, t4].

Inequality (32) is a rather general second-order necessary optimality condition.

From it, using the arbitrariness of du(t) we can obtain a number of relatively easily verifiable
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necessary optimality conditions.
For instance, an immediate corollary of Theorem 2 is

Theorem 3. The optimality of the classical extremal w(t) requires that the inequality

2
. 9 H(e,x(e;);z(e),lp(e)) b<0

(33)

hold for all v € R" and 0 € [t,, t1).

Inequality (33) is an analogue of the Legendre—Clebsch condition (see, e.g., [8]) for the problem
under investigation.

We will study the case of its degeneration.

Definition. If forall v € R" and 0 € [t,, 4]

,02H(6,x(6),u(6),1(8))
v v =
ou?
then the classical extremal u(t) will be called a classically singular control in the problem under
investigation.
From inequality (32), determining the admissible variation du(t) of the control u(t) in a special
manner, we get that the following inequality holds along the classically singular optimal control u(t):

v'(K(8,0)v + Hyy (8,x(68),u(8),9(6)))v < 0. (35)

Theorem 4. It is necessary for the classical optimality of the control u(t) that inequality (35)
hold for all v € R" and 0 € [t,, t;).

Note that inequality (35) is an analogue of the Gabasov-Kirillova optimality condition obtained
by them in [8] for a simpler problem in a completely different way.

0 (34)

5. Conclusion

A non-type optimal control problem with a non-type multipoint quality functional is considered.
Taking into account the specifics of the problem, an adjoint system is introduced in the form of an
integral equation.

The first and second variations of the functional are calculated, which allow us to formulate the
first- and second-order necessary optimality conditions, explicitly expressed through the parameters
of the problem under investigation.
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